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The Probability Axioms

1. Normality. The probability of any proposition X is somewhere
between 0 and 1.

0 ≤ Pr(X) ≤ 1 (1)

2. Certainty. Let Ω be a proposition that is certain to be true.

Pr(Ω) = 1 (2)

3. Additivity. If propositions X and Y are mutually exclusive, then
the probability of their disjunction is equal to the sum of their
probabilities.

Two propositions are mutually exclusive
just in case they cannot both be true.

If X&Y are mutually exclusive, Pr(X ∨Y) = Pr(X) + Pr(Y) (3)

The Overlap Rule

What is the probability of a disjunction when its disjuncts are not
mutually exclusive?

Overlap. The probability of a disjunction is equal to the sum of
the probabilities of its disjuncts minus the probability its disjuncts’
overlap.

Pr(X ∨Y) = Pr(X) + Pr(Y)− Pr(X ∧Y) (4)

We can derive The Overlap Rule from the probability axioms (plus
the assumption that logically equivalent propositions have the same
probability). Here’s how [see pg. 60]:

Extra Assumption: If X and Y are
logically equivalent, then Pr(X) = Pr(Y).

1. From Propositional Logic: (X∨Y) is logically equivalent to ((X ∧Y) ∨ (X ∧ ¬Y) ∨ (¬X ∧Y)) .

2. From Propositional Logic: The propositions (X ∧ Y), (X ∧ ¬Y), and
(¬X ∧Y) are all mutually exclusive.

3. From Additivity: Pr ((X ∧Y) ∨ (X ∧ ¬Y) ∨ (¬X ∧Y)) = Pr(X ∧ Y) +
Pr(X ∧ ¬Y) + Pr(¬X ∧Y).

4. So, given the assumption that logically equivalent proposition have
the same probability, Pr(X ∨ Y) = Pr(X ∧ Y) + Pr(X ∧ ¬Y) +
Pr(¬X ∧Y).

5. From math,

Pr(X ∨Y) = Pr(X ∧Y) + Pr(X ∧ ¬Y) + Pr(¬X ∧Y)

= Pr(X ∧Y) + Pr(X ∧ ¬Y) + Pr(¬X ∧Y) + Pr(X ∧Y)− Pr(X ∧Y)
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6. From Propositional Logic and Additivity:

Pr(X) = Pr(X ∧Y) + Pr(X ∧ ¬Y)

Pr(Y) = Pr(X ∧Y) + Pr(¬X ∧Y)

Hence, Pr(X ∨Y) = Pr(X) + Pr(Y)− Pr(X ∧Y).

This is the intuitive idea behind The
Overlap Rule. If the propositions X
and Y are not mutually exclusive, then
by adding Pr(X) to Pr(Y) in order to
get Pr(X ∨ Y), we are "double counting"
the possibility in which they are both
true, i.e., (X ∧ Y). To correct for this, we
need to subtract out Pr(X ∧Y).

Conditional Probability

Let Pr(X | Y) be the probability of X conditional on Y. Pr(X|Y) is, roughly, the probability that
X is the case on the assumption that Y
is the case.It is defined as follows:

Pr (X | Y) = Pr(X ∧Y)
Pr(Y)

(5)

The probability axioms and the definition of conditional probability
all hold in conditional form. That is, for a proposition E,

Assume that Pr(E) > 0.

1. Normality (Conditional Form).

0 ≤ Pr(X | E) ≤ 1

2. Certainty (Conditional Form).

Pr(Ω | E) = 1

3. Additivity (Conditional Form).

If X&Y are mutually exclusive, Pr(X ∨Y | E) = Pr(X | E) + Pr(Y | E)

4. Conditional Probability (Conditional Form). Assume that both
Pr(E) > 0 and Pr(Y | E) > 0. Then,

Pr (X | (Y ∧ E)) =
Pr ((X ∧Y) | E)

Pr (Y | E)

Proof of 4. Given the definition of
conditional probability, we know that

Pr(X | (Y ∧ E)) =
Pr(X ∧Y ∧ E)

Pr(Y ∧ E)

And

Pr(X ∧Y ∧ E) = Pr((X ∧Y)|E) · Pr(E)

Pr(Y ∧ E) = Pr(Y|E) · Pr(E)

So, we have

Pr(X ∧Y ∧ E)
Pr(Y ∧ E)

=
Pr((X ∧Y)|E) · Pr(E)

Pr(Y|E) · Pr(E)

=
Pr((X ∧Y)|E)

Pr(Y|E)

This means that a conditional probability function Pr(• | E) is, itself,
a probability function.

More Rules and Definitions

The Multiplication Rule: If Pr(E) > 0, then

Pr(X ∧ E) = Pr(X | E) · Pr(E) (6)

The Total Probability Rule: If 0 < Pr(E) < 1, then

Pr(X) = Pr(X | E) · Pr(E) + Pr(X | ¬E) · Pr(¬E) (7)
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The Logical Consequence Rule: Suppose that Y logically entails X.
Then

Pr(Y) ≤ Pr(X) (8)

Statistical Independence. X and Y are said to be statistically inde-
pendent just in case Pr(X | Y) = Pr(X).

If X and Y are statistically independent, Pr(X ∧Y) = Pr(X) · Pr(Y).

Proof. From The Multiplication Rule:

Pr(X ∧Y) = Pr(X | Y) · Pr(Y)

And, from the definition of Statistical
Independence:

Pr(X | Y) = Pr(X)

So, Pr(X ∧Y) = Pr(X) · Pr(Y).

Bayes’ Rule

Let H be some hypothesis. And let E be some evidence.

Bayes’ Rule. Assume that Pr(E) > 0. Then,

Pr(H | E) =
Pr(E | H) · Pr(H)

Pr(E)
(9)

=
Pr(E | H) · Pr(H)

Pr(E | H) · Pr(H) + Pr(E | ¬H) · Pr(¬H)
(10)

This rule follows from the definition of conditional probability.

Proof. From the definition of conditional
probability, we have that

Pr(E | H) =
Pr(E ∧ H)

Pr(H)

Pr(H | E) =
Pr(E ∧ H)

Pr(E)

So, Pr(E | H) · Pr(H) = Pr(E ∧ H). And
thus

Pr(H | E) =
Pr(E | H) · Pr(H)

Pr(E)
Example Problem 1: Spiders.

Let G be the proposition that the bananas are from Guatemala. Let H be
the propositions that the bananas are from Honduras. And let T be the
propositions that the bananas had a tarantula on them. Given that we’ve

Pr(T | H) = .03

Pr(T | G) = .06

Pr(H) = .4

Pr(G) = .6

found a tarantula in the bananas, what’s the probability that they came
from Guatemala?

Pr(G | T) =
Pr(T | G) · Pr(G)

Pr(T | G) · Pr(G) + Pr(T | H) · Pr(H)

=
.06× .6

(.06× .6) + (.03× .4)

=
.036

.036 + .012
=

.036

.048
= .75

Example Problem 2: base rate fallacy

Let B be the proposition that it was a blue cab. Let R be the proposition
that it was a red cab. Let ”B” be the proposition that the witness said it
was a blue cab. And let ”R” be the proposition that the witness said it
was a red cab. Given that the witness said it was a blue cab, what’s the
probability that it was a blue cab?

Pr(”X” | X) = .9

Pr(R) = .99

Pr(B) = .01

Pr(B | ”B”) =
Pr(”B” | B) · Pr(B)

Pr(”B” | B) · Pr(B) + Pr(”B” | R) · Pr(R)

=
.9× .01

(.9× .01) + (.1× .99)
=

.009
.009 + .099

=
9

108
≈ .083
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Expected Value

What is the value of performing an act when you are uncertain about
what would happen were you to perform it?

1. You are confronted with a range of different possible acts, A1, A2, . . . , An,
which are mutually exclusive and exhaustive.

When a set of propositions are mutu-
ally exclusive (i.e., at most one of them
is true) and exhaustive (i.e., at least
one of them is true), we say that the set
forms a partition.

2. For each possible act, consider a (finite) set of mutually exclusive
and exhaustive "possible consequences": C1, C2, . . . , Ck.

3. For each possible consequence Ci and act A, we assign to it a util-
ity: U (Ci ∧A)

4. The expected value of an act A is found by multiplying the utility by
the conditional probability for each consequence, and then adding
them all up.

Exp(A) =
n

∑
i=1

Pr (Ci | A) ·U (Ci ∧A) (11)

The expected utility of an act is a weighted average: it’s the average
utility of a possible consequence, weighted by the probability of
that consequence coming about.

The average of a1, . . . , an is

ai + . . . an

n
=

n

∑
i=1

(
1
n
) · ai

Here, the "weights" are all the same. We
can get a weighted average by changing
the weights (just so long as they sum to
1).

Potential Decision Rules

How should we choose which act, from the set of all available ones,
to perform?

Proposal: Maximize Expected ($) Value.

Objection: We value other things besides money.

Proposal: Postulate the existence of utiles ("unites of pure utility").
Maximize Expected Utiles.

Note: the same dollar amount might
be worth different amounts of utiles
for different people, in different situa-
tions. In fact, it seems like money has
diminishing marginal utility.Objection 2: What about Risk Aversion?

Example. I’m going to toss a fair coin. And I offer you the following
two deals.

A1 : No matter how the coin lands, you get $50.

A2 : If the coin lands Heads, you get $0; if the coin lands Tails, you get
$100.

Suppose you give every dollar equal value. Is it irrational for you to
prefer A1 to A2?

Notice that Exp(A1) = Exp(A2).

Is this just a problem for the first proposal? Or is this a problem for
both proposals?

Suggestion: Allow the utility function to take account of things
like risk and uncertainty.

Objection: Ad hoc? It collapses things that should be kept seper-
ate?


	The Probability Axioms
	The Overlap Rule
	Conditional Probability
	More Rules and Definitions
	Bayes' Rule
	Expected Value

