Interpretations of Probability February 23, 2015

Frequency-type Interpretations of Probability

Frequentism identifies probabilities with *frequencies*. Very Roughly: the probability that A is B = the proportion of As that are Bs. There are several different ways to cash this idea out:

1. *Actual Finite Frequentism.* The probability of an event = its actual relative frequency.

FINITE FREQUENTISM: The probability of an attribute A in a finite reference class B is the relative frequency of actual occurrences of A within B.

Example: I have an urn containing 100 marbles. Exactly 12 of the marbles are red. You reach in and grab a marble. What is the probability that the marble you've selected is red? *Answer:* There are 12 red marbles, and 100 marbles total; so $=\frac{12}{100}$.

Hajek's Fifteen Arguments Against Actual Finite Frequentism:

(1) The Reference Class Problem. (2) Typing Events may Change Probability. (3) Probabilities of Local Events can be Counterfactually Independent of Distant Events. (4) An Argument from Concern. (5) Actual Frequentism Commits one to a Surprisingly Rich Ontology. (6) Actual Frequentism = Operationalism about Probability. (7) Chance is Supposed to Explain Stable Relative Frequencies. (8) Attributes with No Occurrences have Undefined Relative Frequencies. (9) If B Occurs Once, A has Probability 0 or 1: Local Determinism. (10) Universal Generalizations and Existential Statements. (11) Intermediate 'Probabilities' in an Deterministic World. (12) Finite Frequentism Generates Spurious Biases. (13) Finite Frequentism Generates Spurious Correlations. (14) All Irrational Probabilities, and Infinitely Many Rational Probabilities, 'Go Missing'. (15) Non-Frequentist Considerations Enter our Probabilistic Judgments: Symmetry, Derivation from Theory....

Main Problem: It seems to get the wrong results. Suppose a fair coin is flipped once. It comes up heads. The coin is never flipped again. Is the probability of *heads* = 1, or = $\frac{1}{2}$?

2. *Hypothetical Frequentism*. The probability of an event = proportion of times it *would* occur out of an infinite number of trials.

HYPOTHETICAL FREQUENTISM: The probability of an attribute A in a reference class B = p if and only if the limit of the relative frequency of occurrences of A within B would be p if B were infinite.

Hajek's Fifteen Arguments Against Actual Finite Frequentism:

Example: The probability that this coin lands heads when tossed = the number of times the coin lands heads when tossed, divided by the total number of times that the coin is tossed.

See Alan Hajek's paper "Mises Redux — Redux: Fifteen Arguments Against Finite Frequentism" *Erkenntnis*. 1997.

See Alan Hajek's paper "Fifteen Arguments Against Hypothetical Frequentism" *Erkenntnis*. 2009.

- (1) An Abandonment of Empiricism. (2) The Counterfactuals Appealed to are Utterly Bizarre. (3) There is no Fact of what the Hypothetical Sequences Look Like. (4) There Could be More than One Limiting Relative Frequency: The Problem of Ordering. (5) There Could be Less than One Limiting Relative Frequency: the Limit may not Exist. (6) The Limit may Equal the Wrong Value. (7) Hypothetical Frequentism's Order of Expla-
- nation is Back-to-Front. (8) The Limit Might Exist When it should Not. (9) Subsequences can be Found Converging to Whatever Value You Like.
- (10) Necessarily Single-Case Events. (11) Uncountably Many Events.
- (12) Exchangeability, and Independent, Identically Distributed Trials.
- (13) Limiting Relative Frequency Violates Countable Additivity (14) The Domain of Limiting Relative Frequencies is not a Field. (15) According to Hypothetical Frequentism, there are no Infinitesimal Probabilities.

Major Problem: What counts as the "same trial"? Events that, intuitively, cannot be repeated have probabilities. Who cares about what happens in the long run?

3. Propensity. The probability of an event occurring = the propensity (or disposition, or tendency, etc.) of the world to produce events of that type. Objects have dispositional properties which ground facts about hypothetical frequencies.

Belief-type Interpretations of Probability

- The Evidential/Logical Interpretation. We understand probability
 as a generalization of the notion of deductive entailment. Probability captures the idea that A strongly supports B, without entailing
 it.
- 2. *The Personal Probability Interpretation*. There are two types:
 - o Actual Personal Probabilities.
 - o Ideally Rational Personal Probabilities.

The Bayesian Program:

Stage 1: *Precision.* Individuals have real-valued degrees of belief.

Stage 2: *Synchronic Rationality (Probabilism).* A rational agent's degrees of belief conform to the probability axioms.

Stage 3. *Diachronic Rationality (Conditionalization).* The rational way to "update" on some information is to conditionalize on it.

Probability is degree of belief.